Show this page for printing or as short info (with end time)

NICE 2021 - Agenda

(show all abstracts)
Tuesday, 16 March 2021

NICE #8


(The NICE#8 was initially planned to take place in 2020, but had to be postponed to 2021 due to COVID-19.)

Note: the exact order and timing of the talks is so far draft!

Times in the agenda are in CET (Berlin), EDT (New York), PDT (Los Angeles) and UTC. (Some other time zones: Australia, Japan, China, India, ... or only CET ... )

Meeting venue:

  • online as zoom video conference (live talks and Q and A). The zoom video conference client software (free of charge, available for Windows, Mac and Linux at zoom.us, also available for iOS and Android in the respective app stores ) is required.
  • please register here for NICE 2021

NEUROTECH Forum (15 March 2021)

Info: just before NICE on 15 March 2021 the NEUROTECH Forum II will take place online (free of charge. Registration for the forum event). The topic is "Neuromorphic Computing Technologies: Opportunities, challenges and Applications Roadmap".

CET: 14:00‑14:10
EDT: 09:00‑09:10
PDT: 06:00‑06:10
UTC: 13:00‑13:10
(10+5 min)
 
Welcome to NICE #8
CET: 14:15‑14:40
EDT: 09:15‑09:40
PDT: 06:15‑06:40
UTC: 13:15‑13:40
(25 min)
 
Organizer Round
CET: 14:40‑15:20
EDT: 09:40‑10:20
PDT: 06:40‑07:20
UTC: 13:40‑14:20
(40+5 min)
 
Keynote: Lessons from Loihi for the Future of Neuromorphic Computing

show abstract

Mike Davies (Intel)
CET: 15:25‑15:45
EDT: 10:25‑10:45
PDT: 07:25‑07:45
UTC: 14:25‑14:45
(20+5 min)
 
Why is Neuromorphic Event-based Engineering the future of AI?
Ryad Benjamin Benosman (UPITT/CMU/SORBONNE)
CET: 15:50‑16:10
EDT: 10:50‑11:10
PDT: 07:50‑08:10
UTC: 14:50‑15:10
(20+5 min)
 
The BrainScaleS mobile platform

show abstract

Johannes Schemmel (Heidelberg University)
CET: 16:15‑16:45
EDT: 11:15‑11:45
PDT: 08:15‑08:45
UTC: 15:15‑15:45
(30 min)
 
(break)
CET: 16:45‑16:55
EDT: 11:45‑11:55
PDT: 08:45‑08:55
UTC: 15:45‑15:55
(10 min)
 
Group photo (zoom screenshots)
CET: 16:55‑17:15
EDT: 11:55‑12:15
PDT: 08:55‑09:15
UTC: 15:55‑16:15
(20+5 min)
 
Evaluating complexity and resilience trade-offs in emerging memory inference machines
Christopher Bennett (Sandia National Labs)
CET: 17:20‑17:30
EDT: 12:20‑12:30
PDT: 09:20‑09:30
UTC: 16:20‑16:30
(10+5 min)
 
Lightning talk: From clean room to machine room: towards accelerated cortical simulations on the BrainScaleS wafer-scale system

show abstract

Sebastian Schmitt (Heidelberg University)
CET: 17:35‑17:55
EDT: 12:35‑12:55
PDT: 09:35‑09:55
UTC: 16:35‑16:55
(20+5 min)
 
Closed-loop experiments on the BrainScaleS-2 architecture

show abstract

Korbinian Schreiber (Heidelberg University)
CET: 18:00‑18:20
EDT: 13:00‑13:20
PDT: 10:00‑10:20
UTC: 17:00‑17:20
(20+5 min)
 
Batch << 1: Why Neuromorphic Computing Architectures Suit Real-Time Workloads
Jonathan Tapson (GrAI Matter Labs)
CET: 18:25‑18:45
EDT: 13:25‑13:45
PDT: 10:25‑10:45
UTC: 17:25‑17:45
(20+5 min)
 
Neuromorphic and AI research at BCAI (Bosch Center for Artificial Intelligence)
Thomas Pfeil (Bosch Center for Artificial Intelligence)
CET: 18:50‑19:10
EDT: 13:50‑14:10
PDT: 10:50‑11:10
UTC: 17:50‑18:10
(20+5 min)
 
Mapping Deep Neural Networks on SpiNNaker2
Florian Kelber (TU Dresden)
CET: 19:15‑19:45
EDT: 14:15‑14:45
PDT: 11:15‑11:45
UTC: 18:15‑18:45
(30 min)
 
Open mic / discussion
CET: 19:45
EDT: 14:45
PDT: 11:45
UTC: 18:45
End of day I
CET: 19:45‑20:45
EDT: 14:45‑15:45
PDT: 11:45‑12:45
UTC: 18:45‑19:45
(60 min)
(break)
CET: 21:00‑00:00
EDT: 16:00‑19:00
PDT: 13:00‑16:00
UTC: 20:00‑23:00
(180 min)
Tutorials: BrainScaleS and DYNAP-SE

Two tutorials/hands on in parallel:

  • BrainScaleS (note: the same BrainScaleS hands on tutorial is also offered on Thursday, 10:00-13:00h CET)
    • about 30 min introduction
    • hands-on usage of the BrainScaleS system (via web browser). Limited number of participants.
  • DYNAP-SE (note:the same DYNAP-SE hands on tutorial is also offered on Friday morning)
    • 1-hour live/interactive Dynapse demo: demo on a real Dynapse, take questions and implementing small changes from the audience.
    • 2-hour guided session where participants run a Jupyter notebook with simulations modelling Dynapse. This part is limited to 15 people per session.

For a description please see the tutorials page.


Wednesday, 17 March 2021
CET: 10:30‑12:00
EDT: 05:30‑07:00
PDT: 02:30‑04:00
UTC: 09:30‑11:00
(90 min)
Tutorial: SpiNNaker hands-on

(Note: the same SpiNNaker hands on tutorial is also offered on Thursday, 21:00 - 22:30h CET)

For a description please see the tutorials page.

Andrew Rowley (UMAN)
CET: 12:00‑14:00
EDT: 07:00‑09:00
PDT: 04:00‑06:00
UTC: 11:00‑13:00
(120 min)
(break)
CET: 14:00
EDT: 09:00
PDT: 06:00
UTC: 13:00
NICE - day II
CET: 14:00‑14:40
EDT: 09:00‑09:40
PDT: 06:00‑06:40
UTC: 13:00‑13:40
(40+5 min)
 
Keynote: From Brains to Silicon -- Applying lessons from neuroscience to machine learning

show abstract

Jeff Hawkins and Subutai Ahmad (Numenta)
CET: 14:45‑15:05
EDT: 09:45‑10:05
PDT: 06:45‑07:05
UTC: 13:45‑14:05
(20+5 min)
 
A Neuromorphic Future for Classic Computing Tasks
Brad Aimone (Sandia National Laboratories)
CET: 15:10‑15:20
EDT: 10:10‑10:20
PDT: 07:10‑07:20
UTC: 14:10‑14:20
(10+5 min)
 
Lightning talk: Benchmarking of Neuromorphic Hardware Systems

show abstract

Christoph Ostrau (Bielefeld University)
CET: 15:25‑15:45
EDT: 10:25‑10:45
PDT: 07:25‑07:45
UTC: 14:25‑14:45
(20+5 min)
 
Natural density cortical models as benchmarks for universal neuromorphic computers

show abstract

Markus Diesmann (Forschungszentrum Jülich GmbH)
CET: 15:50‑16:15
EDT: 10:50‑11:15
PDT: 07:50‑08:15
UTC: 14:50‑15:15
(25 min)
 
Poster Lightning Talks

1 min - 1 slide poster appetizers

CET: 16:15‑17:15
EDT: 11:15‑12:15
PDT: 08:15‑09:15
UTC: 15:15‑16:15
(60 min)
 
Poster session A and coffee
CET: 17:15‑17:35
EDT: 12:15‑12:35
PDT: 09:15‑09:35
UTC: 16:15‑16:35
(20+5 min)
 
Platform-Agnostic Neural Algorithm Composition using Fugu
William Severa (Sandia National Laboratories)
CET: 17:40‑17:50
EDT: 12:40‑12:50
PDT: 09:40‑09:50
UTC: 16:40‑16:50
(10+5 min)
 
Lightning talk: Implementing Backpropagation for Learning on Neuromorphic Spiking Hardware

show abstract

Andrew Sornborger (Los Alamos National Laboratory)
CET: 17:55‑18:15
EDT: 12:55‑13:15
PDT: 09:55‑10:15
UTC: 16:55‑17:15
(20+5 min)
 
Inductive bias transfer between brains and machines

show abstract

Fabian Sinz (University Tübingen)
CET: 18:20‑18:30
EDT: 13:20‑13:30
PDT: 10:20‑10:30
UTC: 17:20‑17:30
(10+5 min)
 
Lightning talk: Spike Latency Reduction generates Efficient Predictive Coding

show abstract

Pau Vilimelis Aceituno (ETH Zürich)
CET: 18:35‑18:45
EDT: 13:35‑13:45
PDT: 10:35‑10:45
UTC: 17:35‑17:45
(10+5 min)
 
Lightning talk: Cognitive Domain Ontologies: HPCs to Ultra Low Power Neuromorphic Platforms

show abstract

Chris Yakopcic (University of Dayton)
CET: 18:50‑19:20
EDT: 13:50‑14:20
PDT: 10:50‑11:20
UTC: 17:50‑18:20
(30 min)
 
Open mic / discussion
CET: 19:20‑20:20
EDT: 14:20‑15:20
PDT: 11:20‑12:20
UTC: 18:20‑19:20
(60 min)
 
(break)

Thursday, 18 March 2021
CET: 10:00‑13:00
EDT: 05:00‑08:00
PDT: 02:00‑05:00
UTC: 09:00‑12:00
(180 min)
Tutorial: BrainScaleS hands-on

(Note: the same BrainScaleS hands on tutorial is also offered on Tuesday evening)

  • about 30 min introduction
  • hands-on usage of the BrainScaleS system (via web browser). Limited number of participants.

For a description of the pre-requirements, please see the tutorials page.

CET: 13:00‑14:00
EDT: 08:00‑09:00
PDT: 05:00‑06:00
UTC: 12:00‑13:00
(60 min)
(break)
CET: 14:00
EDT: 09:00
PDT: 06:00
UTC: 13:00
NICE - day III
CET: 14:00‑14:40
EDT: 09:00‑09:40
PDT: 06:00‑06:40
UTC: 13:00‑13:40
(40+5 min)
 
Keynote: Biological inspiration for improving computing and learning in spiking neural networks

show abstract

Wolfgang Maass (Graz University of Technology)
CET: 14:45‑15:05
EDT: 09:45‑10:05
PDT: 06:45‑07:05
UTC: 13:45‑14:05
(20+5 min)
 
On the computational power and complexity of Spiking Neural Networks
Johan Kwisthout (Radboud Universiteit Nijmegen)
CET: 15:10‑15:30
EDT: 10:10‑10:30
PDT: 07:10‑07:30
UTC: 14:10‑14:30
(20+5 min)
 
Evolutionary Optimization for Neuromorphic Systems

show abstract

Catherine Schuman (Oak Ridge )
CET: 15:35‑15:55
EDT: 10:35‑10:55
PDT: 07:35‑07:55
UTC: 14:35‑14:55
(20+5 min)
 
An event-based gas sensing device that resolves fast transients in a turbulent environment
Michael Schmuker (University of Hertfordshire)
CET: 16:00‑16:20
EDT: 11:00‑11:20
PDT: 08:00‑08:20
UTC: 15:00‑15:20
(20+5 min)
 
Sequence learning, prediction, and generation in networks of spiking neurons

show abstract

Younes Bouhadjar (Forschungszentrum Juelich)
CET: 16:25‑17:25
EDT: 11:25‑12:25
PDT: 08:25‑09:25
UTC: 15:25‑16:25
(60 min)
 
Poster session b and coffee
CET: 17:25‑17:45
EDT: 12:25‑12:45
PDT: 09:25‑09:45
UTC: 16:25‑16:45
(20+5 min)
 
Walter Senn (Universität Bern)
CET: 17:50‑18:10
EDT: 12:50‑13:10
PDT: 09:50‑10:10
UTC: 16:50‑17:10
(20+5 min)
 
Conductance-based dendrites perform reliability-weighted opinion pooling

show abstract

Jakob Jordan (Institute of Physiology, University of Bern)
CET: 18:15‑18:25
EDT: 13:15‑13:25
PDT: 10:15‑10:25
UTC: 17:15‑17:25
(10+5 min)
 
Lightning talk: Natural gradient learning for spiking neurons

show abstract

Elena Kreutzer (University of Bern)
CET: 18:30‑18:50
EDT: 13:30‑13:50
PDT: 10:30‑10:50
UTC: 17:30‑17:50
(20+5 min)
 
Making spiking neurons more succinct with multi-compartment models
Johannes Leugering (Fraunhofer IIS)
CET: 18:55‑19:05
EDT: 13:55‑14:05
PDT: 10:55‑11:05
UTC: 17:55‑18:05
(10+5 min)
 
Lightning talk: The Computational Capacity of Mem-LRC Reservoirs
Forrest Sheldon (Los Alamos National Lab - T-4/CNLS)
CET: 19:10‑19:40
EDT: 14:10‑14:40
PDT: 11:10‑11:40
UTC: 18:10‑18:40
(30 min)
 
Open mic / discussion
CET: 19:40‑20:50
EDT: 14:40‑15:50
PDT: 11:40‑12:50
UTC: 18:40‑19:50
(70 min)
(break)
CET: 21:00‑22:30
EDT: 16:00‑17:30
PDT: 13:00‑14:30
UTC: 20:00‑21:30
(90 min)
Tutorial: SpiNNaker hands-on

(Note: the same SpiNNaker hands on tutorial is also offered on Wednesday, 10:30-12:00h CET)

For a description please see the tutorials page.


Friday, 19 March 2021
CET: 10:00‑13:00
EDT: 05:00‑08:00
PDT: 02:00‑05:00
UTC: 09:00‑12:00
(180 min)
Tutorial:: DYNAP-SE

(Note: the same DYNAP-SE tutorial is also offered on Tuesday evening)

  • 1-hour live/interactive Dynapse demo: demo on a real Dynapse, take questions and implementing small changes from the audience.
  • 2-hour guided session where participants run a Jupyter notebook with simulations modelling Dynapse. This part is limited to 15 people per session.
CET: 13:00‑14:00
EDT: 08:00‑09:00
PDT: 05:00‑06:00
UTC: 12:00‑13:00
(60 min)
(break)
CET: 14:00
EDT: 09:00
PDT: 06:00
UTC: 13:00
NICE - day IV
CET: 14:00‑14:40
EDT: 09:00‑09:40
PDT: 06:00‑06:40
UTC: 13:00‑13:40
(40+5 min)
 
Keynote: Bottom-up and top-down neuromorphic processor design: Unveiling roads to embedded cognition

show abstract

Charlotte Frenkel (Institute of Neuroinformatics, Zürich, Switzerland)
CET: 14:45‑14:55
EDT: 09:45‑09:55
PDT: 06:45‑06:55
UTC: 13:45‑13:55
(10+5 min)
 
Lightning talk: Subspace Locally Competitive Algorithms

show abstract

Dylan Paiton (University of Tübingen)
CET: 15:00‑15:20
EDT: 10:00‑10:20
PDT: 07:00‑07:20
UTC: 14:00‑14:20
(20+5 min)
 
Programming neuromorphic computers: PyNN and beyond
Andrew Davison (CNRS)
CET: 15:25‑15:35
EDT: 10:25‑10:35
PDT: 07:25‑07:35
UTC: 14:25‑14:35
(10+5 min)
 
Lightning talk: TBD
William Kay (Oak Ridge National Laboratory)
CET: 15:40‑16:00
EDT: 10:40‑11:00
PDT: 07:40‑08:00
UTC: 14:40‑15:00
(20+5 min)
 
BrainScaleS: Development Methodologies and Operating System

show abstract

Eric Müller (Heidelberg University)
CET: 16:05‑16:15
EDT: 11:05‑11:15
PDT: 08:05‑08:15
UTC: 15:05‑15:15
(10+5 min)
 
Lightning talk: Evolving Spiking Neural Networks for Robot Sensory-motor Decision Tasks of Varying Difficulty

show abstract

J. David Schaffer (Binghamton University)
CET: 16:20‑16:50
EDT: 11:20‑11:50
PDT: 08:20‑08:50
UTC: 15:20‑15:50
(30 min)
 
Coffee break
CET: 16:50‑17:10
EDT: 11:50‑12:10
PDT: 08:50‑09:10
UTC: 15:50‑16:10
(20+5 min)
 
Relational Neurogenesis for Lifelong Learning Agents
Tej Pandit (University of Texas at San Antonio)
CET: 17:15‑17:25
EDT: 12:15‑12:25
PDT: 09:15‑09:25
UTC: 16:15‑16:25
(10+5 min)
 
Lightning talk: Fast and deep neuromorphic learning with first-spike coding

show abstract

Julian Goeltz (Kirchhoff Institut fuer Physik, Universitaet Heidelberg)
CET: 17:30‑17:40
EDT: 12:30‑12:40
PDT: 09:30‑09:40
UTC: 16:30‑16:40
(10+5 min)
 
Lightning talk: Neuromorphic Computing for Spacecraft’s Terrain Relative Navigation: A Case of Event-Based Crater Classification Task
Kazuki Kariya (The Graduate University for Advanced Studies, SOKENDAI)
CET: 17:45‑18:05
EDT: 12:45‑13:05
PDT: 09:45‑10:05
UTC: 16:45‑17:05
(20+5 min)
 
Beyond Backprop: Different Approaches to Credit Assignment in Neural Nets

show abstract

Irina Rish (MILA / Université de Montréal )
CET: 18:10‑18:20
EDT: 13:10‑13:20
PDT: 10:10‑10:20
UTC: 17:10‑17:20
(10+5 min)
 
Lightning talk: Comparing Neural Accelerators & Neuromorphic Architectures The False Idol of Operations

show abstract

Craig Vineyard (Sandia National Laboratories )
CET: 18:25‑18:45
EDT: 13:25‑13:45
PDT: 10:25‑10:45
UTC: 17:25‑17:45
(20+5 min)
 
Real-time Mapping on a Neuromorphic Processor

Navigation is so crucial for our survival that the brain hosts a dedicated network of neurons to map our surroundings. Place cells, grid cells, border cells, head direction cells and other specialized neurons in the hip- pocampus and the cortex work together in planning and learning maps of the environment [1]. When faced with similar navigation challenges, robots have an equally important need for generating a stable and accurate map. In our ongoing effort to translate the biological network for spatial navigation into a spiking neural network (SNN) that controls mobile robots in real-time, we first focused on simultaneous localization and mapping (SLAM), being one of the critical problems in robotics that relies highly on the accuracy of map representation [2]. Our approach allows us to leverage the asynchronous computing paradigm commonly found across brain areas and therefore has already demonstrated to be a significant energy-efficient solution for 1D SLAM [3], that can spur the emergence of the new neuromorphic processors, such as Intel’s Loihi [4] and IBM’s TrueNorth [5]. In this paper, we expand our previous work by proposing a SNN that forms a cognitive map of an unknown environment and is seamlessly integrated to Loihi.

[1] S. Poulter, T. Hartley, and C. Lever, "The neurobiology of mammalian navigation," Current Biology, vol. 28, no. 17, pp. R1023-R1042, 2018.

[2] G. Grisetti, C. Stachniss, and W. Burgard, "Improved techniques for grid mapping with rao-blackwellized particle filters," IEEE transactions on Robotics, vol. 23, no. 1, p. 34, 2007.

[3] G. Tang, A. Shah, and K. P. Michmizos, "Spiking neural network on neuromorphic hardware for energy- efficient unidimensional SLAM," in IEEE/RSJ International Conference onIntelligent Robots and Systems (IROS), Macau, China, 2019, pp. 1-6.

[4] M. Davies et al., "Loihi: A neuromorphic manycore processor with on-chip learning," IEEE Micro, vol. 38, no. 1, pp. 82-99, 2018.

[5] P. A. Merolla et al., "A million spiking-neuron integrated circuit with a scalable communication network and interface," Science, vol. 345, no. 6197, pp. 668-673, 2014.

Konstantinos Michmizos
CET: 18:50‑19:20
EDT: 13:50‑14:20
PDT: 10:50‑11:20
UTC: 17:50‑18:20
(30 min)
 
Wrap up / farewell
CET: 19:20
EDT: 14:20
PDT: 11:20
UTC: 18:20
End of NICE 2021
Contact: bjoern.kindler@kip.uni-heidelberg.de